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Abstract
We study the interaction of Brownian particles with a changing temperature
field in the presence of a one-dimensional periodic adiabatic potential. We
show the existence of directed transport through the determination of the
overall current of Brownian particles crossing the boundary of the system.
With respect to the case of Brownian particles in a thermal bath, we determine
a current which exhibits a contribution explicitly related to the presence of a
thermal gradient. Beyond the self-consistent calculation of the temperature and
probability density distribution of Brownian particles, we evaluate the energy
consumption for directed transport to take place. Our description is based on
Streater’s model, and solutions are obtained by perturbing the system from its
initial thermodynamic equilibrium state.

PACS numbers: 05.60.−k, 05.40.Jc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years, there has been an increasing tendency toward the use of Brownian motors,
or ratchets, to describe a variety of physical systems either of biological or technological
relevance. In biophysics, Brownian motors are a suitable ‘candidate’ to explain phenomena
such as muscle contraction, molecular transport and some functions of biological ion channels
[1–3]. In the technological context, ratchets are used to describe phenomena such as mass
separation, trapping schemes and directed vortex motion in superconductors [4–6].
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The concept on which the theory of Brownian motors has been developed lies in the
possibility of gaining useful work from unbiased microscopic random fluctuations. This
idea was originally put forward by Smoluchowski and Feynman [7], and the explanation and
physical interpretation of the Smoluchowski and Feynman’s experiment can be found, for
example, in [8].

The ability of extracting useful work from a Brownian system is related to the notion of
directed transport of Brownian particles. Directed transport consists of a dissipative dynamics
in the presence of thermal noise and some perturbation that drives the system away from
equilibrium without introducing an a priori biased direction of motion [8]. These perturbations
can be deterministic or stochastic, and can be externally imposed or intrinsic to the system.
Brownian motors are studied in spatially periodic small-scale systems. In this case, directed
transport is achieved by breaking thermal equilibrium and spatial inversion symmetry [8, 9].
As pointed out by Reimann [8], symmetry breaking may occur in three ways: (i) intrinsically,
i.e. in the presence of a periodic asymmetric potential (the so-called ratchet potential); (ii)
by means of non-equilibrium perturbations which bring about a spatial asymmetry of the
dynamics or (iii) through spontaneous symmetry breaking in the form of collective effects in
coupled, perfectly symmetric, non-equilibrium systems.

Several types of Brownian motors have been identified. Rocket, or thermal, ratchets
consist of Brownian particles able to rectify noise into vectorial motion in an anisotropic
potential undergoing external fluctuations or external periodic forces [10, 11]. In flashing
ratchets, Brownian particles are subject to switching potentials, and the direction of motion
depends on the rate of switching and the asymmetry of the potentials [11, 12]. Lastly, in
colored ratchets, transport of Brownian particles is produced by inducing transport from the
time correlation of colored noise in an anisotropic potential [10].

An important feature of Brownian motors was outlined by Magnasco [13] who showed
that Brownian particles can exhibit a non-zero net drift speed when subjected to a symmetry
breaking potential and a time-correlated external force. Parrondo [14] proved the existence
of transport of Brownian particles in a one-dimensional periodic potential which changes
adiabatically in time. By letting the potential depend on time through a certain collection of
parameters, Parrondo was able to express the net fraction of particles crossing the boundary
of the system (during an adiabatic variation of the potential) in terms of the contour integral
of a non-exact differential form in the space of parameters of the potential. The work required
to change the potential is an exact differential form in the space of parameters, and a closed
path in this space produces transport of particles without energy consumption. These cycles
were therefore named reversible ratchets [14].

The results presented in [14] were obtained by studying the Smoluchowski equation,

∂ρ

∂t
= ∂

∂x

(
kBT

ζ

∂ρ

∂x
+

1

ζ

∂V

∂x
ρ

)
, (1.1)

where ρ denoted the probability density distribution of Brownian particles, kB the Boltzmann
constant, T absolute temperature, ζ a damping constant and V the adiabatic ratchet potential.
Equation (1.1) was investigated in a one-dimensional periodic lattice and assuming that the
potential, V, was periodic in time and space, and that its period in space coincided with the
size of the lattice reference cell. This allowed for investigating equation (1.1) in the domain
[xn, xn + L], where xn and L denoted the nth lattice site and the size of the representative
cell, respectively. Consequently, the ratchet potential was introduced by means of the function
V : R

+
0 ×[xn, xn +L] → R, defined at every time t ∈ R

+
0 and space coordinate x ∈ [xn, xn +L].

The assumption of an adiabatic potential enabled Parrondo to find the solution to equation (1.1)
as the sum of an equilibrium probability density distribution (given by the Gibbs probability
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density distribution) and a field ϕ whose integral over the interval [xn, xn + L] was imposed
to be zero. Both the Gibbs probability density distribution and the field ϕ were found by
enforcing periodic boundary conditions on the boundary of the lattice reference cell.

The Smoluchowski equation (1.1) represents the Fokker–Planck equation corresponding
to the Langevin description of motion for a Brownian particle, i.e.

ζ ż(t) = −∂V

∂x
(t, z(t)) + ξ(t). (1.2)

Here, z(t) denotes the trajectory of the Brownian particle and ξ(t) is the zero-mean Gaussian
white thermal noise (i.e. 〈ξ(t)〉 = 0) whose time correlation function is given by the
dissipation–fluctuation relation 〈ξ(t)ξ(t ′)〉 = 2kBT δ(t − t ′). Equation (1.2) holds true when
the Brownian particle is assumed to thermalize rapidly. Since the characteristic time scale for
thermalization is defined by tth = m/ζ (m is the mass of a Brownian particle), when t � tth,
the inertial term, mz̈(t), becomes irrelevant and the friction force, ζ ż(t), is compensated for
by the external random forces. In this case, the velocity ż(t) is said to be the terminal velocity.
In this framework, temperature is regarded as a constant (this condition can be achieved either
by a controlled heat flow across the boundary of the system or under the hypothesis of infinite
thermal conductivity of the medium in which the Brownian particles evolve) and leads to the
constant molecular diffusivity D = (kBT )/ζ featuring in equation (1.1).

In this paper, we propose an extension of Parrondo’s results [14], by assuming that
temperature changes in both time and space. In this case, if the system of interest is closed
(in the sense that it does not exchange heat with the outside world), the motion of a particle
leaves a trail of heat which, being distributed to the whole system, produces a local change
in the temperature of the system. On the other hand, a variation in the temperature field
influences the behavior of a Brownian particle by changing its diffusivity and probability
density distribution. Therefore, the equation of motion of the particle must be supplemented
and coupled with a heat-dependent equation of motion. Streater [15, 16] suggested a model
of a Brownian particle in a closed system in which changes in temperature are considered and
the first and second law of thermodynamics are satisfied. On the basis of Streater’s model, it
is possible to study the interaction of Brownian particles with a changing temperature field in
the presence of a one-dimensional periodic adiabatic potential. Under these hypotheses, we
prove the existence of directed transport and show how the variability of temperature plays a
role in the determination of the net current of particles crossing the boundary of the system.
This current will be evaluated after the self-consistent calculation of the temperature and
probability distribution of Brownian particles. By virtue of the adiabaticity of the potential,
the solutions of the coupled partial differential equations given by Streater’s model will be
found by perturbing the system from its thermodynamic equilibrium state and will be expressed
in terms of asymptotic expansions.

For our purposes, the time scales characterizing thermal diffusion, tT , diffusion of
Brownian particles, tD , and the periodic variation of the potential, tV , will be introduced
and compared with each other. We remark that, since our long-term goal is the development
of a model capable of describing molecular motors in biological applications, and we are
particularly interested in specifying our model to the study of muscle contraction, we shall
assume that the time scale tD refers to the diffusion of relatively big molecules, and that,
through a suitable choice of the parameters defining tT , the time scale tT is smaller than tD .

Before going further, we would like to remark that there are rather recent papers (cf, for
example [17, 18]) in which the existence of unidirectional motion for a classical Brownian
particle subject to the action of a one-dimensional parametric potential is proven. In these
papers, the potential, V, is defined as function of space, and is parameterized by a time-varying
quantity, γ (t), such that V (x, γ (t)) = W(x)+W(x−γ (t)). The process γ (t), named external
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translations by these authors, admits an effective counterpart, denoted by �(t) in [18], that
satisfies a Langevin-type equation, and whose values identify the irregularities encountered by
the trajectory of the Brownian particle. The equation governing the evolution of the Brownian
particle is thus coupled with the equation defining the behavior of �(t) through the definition
of the potential, V (x, γ (t)).

2. Streater’s model

According to Streater’s model [15, 16], the Smoluchowski equation (1.1) is coupled with a
nonlinear Fourier equation for the temperature field, T, i.e.⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ρ

∂t
= ∂

∂x

[
kBT

ζ

∂ρ

∂x
+

1

ζ

∂V

∂x
ρ

]

C
∂T

∂t
= λ

∂2T

∂x2
+

∂V

∂x

[
kBT

ζ

∂ρ

∂x
+

1

ζ

∂V

∂x
ρ

] (2.1)

where specific heat, C, and thermal conductivity, λ, are assumed to be constant, and
molecular diffusivity is assumed to depend on the temperature field through the linear relation
D(T (t, x)) = (kBT (t, x))/ζ . We note that the nonlinearity of equations (2.1) is because the
coupling term, given by the probability current

J = −
[
kBT

ζ

∂ρ

∂x
+

1

ζ

∂V

∂x
ρ

]
, (2.2)

depends on temperature in a nonlinear way.
We shall investigate the interaction between Brownian particles (characterized by the

probability density distribution ρ) and the changing temperature field, T, in one-dimensional
periodic lattice. Then, by letting xn and L denote the nth lattice site and the size of the lattice
reference cell, respectively, the domain in which we shall study our problem is the reference
cell [xn, xn + L]. Similar to Parrondo’s approach [14], we shall consider the adiabatic ratchet
potential, V, to be periodic in time and space. In particular, the space period will be assumed
to coincide with the length of the reference cell, L.

For our purposes, we supplement equations (2.1) with the following initial and boundary
conditions:

Initial and boundary conditions imposed on the probability density distribution, ρ:

ρ(tin, x) = ρin(x), ∀x ∈ [xn, xn + L], (2.3)

ρ(t, xn) = ρ(t, xn + L), ∀t ∈ R
+
0, (2.4)∫ xn+L

xn

ρ(t, x) dx = 1, ∀tR ∈+
0 . (2.5)

Initial and boundary conditions imposed on the temperature field, T:

T (tin, x) = T in, ∀x ∈ [xn, xn + L], (2.6)⎧⎨
⎩

T (t, xn) = T (t, xn + L), ∀t ∈ R
+
0,

∂T

∂x
(t, xn) = ∂T

∂x
(t, xn + L), ∀t ∈ R

+
0 .

(2.7)

The boundary conditions (2.4) and (2.7) require the probability density distribution,
temperature and temperature gradient to be periodic functions of space, while equation (2.5)
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imposes the normalization condition on the probability density distribution. We remark that,
although in equation (2.6) we imposed that the initial temperature is equal to the constant T in,
the results presented in this paper hold true even in the more general case in which the initial
temperature distribution equals a function of space coordinates, i.e. T (tin, x) = Tin(x).

In order to verify that the first law of thermodynamics is satisfied, we need to evaluate the
derivative of energy with respect to time. Since the global energy of the system is given by

E(t) =
∫ xn+L

xn

ρ(t, x)V (t, x) dx + C

∫ xn+L

xn

T (t, x) dx, (2.8)

differentiation with respect to time, integration by parts, and taking into account equations (2.1)
yield

dE

dt
(t) = −[J (t, x)V (t, x)]xn+L

xn
+

[
λ

∂T

∂x
(t, x)

]xn+L

xn

+
∫ xn+L

xn

ρ(t, x)
∂V

∂t
(t, x) dx. (2.9)

If the potential V is periodic, a further simplification occurs if the probability current, J, and
the temperature gradient, ∂T /∂x, are spatially periodic functions in the interval [xn, xn + L].
In this case, equation (2.9) becomes

dE

dt
(t) =

∫ xn+L

xn

ρ(t, x)
∂V

∂t
(t, x) dx. (2.10)

Equation (2.10) illustrates that the energy of the system is not conserved. This means that, for
the system under investigation, the first law of thermodynamics does not reduce to the strict
balance of energy, i.e.

dE

dt
(t) = 0. (2.11)

In order to check the second law of thermodynamics, we need to write an expression for
entropy, i.e.

S(t) = −kB

∫ xn+L

xn

ρ(t, x) ln[ρ(t, x)] dx + C

∫ xn+L

xn

ln

(
T (t, x)

ϑ

)
dx, (2.12)

where ϑ is a constant reference temperature. By differentiating with respect to time,
using equations (2.1) and assuming that the potential, V, the probability current, J, and
the temperature gradient, ∂T /∂x, are spatially periodic functions in the interval [xn, xn + L],
we find

dS

dt
(t) = kB

∫ xn+L

xn

[J (t, x)]2

D(T (t, x))ρ(t, x)
dx + λ

∫ xn+L

xn

[
1

T (t, x)

∂T

∂x
(t, x)

]2

dx � 0. (2.13)

Since both terms on the right-hand side of equation (2.13) are greater than or equal to zero,
the second law of thermodynamics is always respected.

3. Perturbative approach to Streater’s model

In this section, we search for the solution to equations (2.1) by perturbing the system from
its thermodynamic equilibrium state. Our approach is based on the possibility of determining
two time scales, tf and ts , which refer to the fastest and the slowest process occurring in
the system, respectively. We hypothesize that these time scales are well separated, i.e. we
postulate the existence of a positive real smallness parameter, ε, such that ε = tf /ts .

The ratchet potential, V, is periodic in time with period tV , and we require that its adiabatic
variation over tV represents the slowest process accounted for in the system. This statement
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implies that ts = tV . Following the picture presented by Parrondo [14], by slow (or adiabatic)
variation of the potential over its period, we mean that, if the interval over which the potential
varies in time is discretized into N steps and the potential is assumed to make a ‘jump’ at
each step, then, after each jump, we allow the system to relax before the potential makes the
following jump. According to this description, the relaxation time has to be identified with
the characteristic time scale associated with the fastest process taking place in the system, i.e.
tf , and the adiabatic limit is attained by imposing tf /tV = ε, and letting the potential change
smoothly in time.

In the case studied by Parrondo [14], temperature was regarded as a constant, and the
only equation to be solved was the Smoluchowski equation (cf equation (1.1)). Therefore,
the relaxation time of the system coincided with the time scale associated with diffusion of
Brownian particles. In our case, instead, it is necessary to distinguish between the relaxation
time associated with thermal diffusion (i.e., the time scale associated with thermal diffusion)
and the relaxation time referring to the diffusion of Brownian particles (i.e., the time scale
associated with molecular diffusivity). Since, as anticipated in section 1, we assume in this
paper that the former (denoted by tT ) is smaller than the latter (denoted by tD), we regard
thermal diffusion as the fastest process accounted for in the system under investigation. Thus,
we set tf = tT , and we base our discussion on the condition tT /tV = ε � 1.

Since we are interested in investigating the behavior of the system at long time scales (i.e.
at the time scale dictated by tV ), we shall rescale the system of PDEs given in equation (2.1),
together with the initial and boundary conditions stated in equations (2.3)–(2.7), and study it
at the time scale at which the temporal variation of the adiabatic ratchet potential becomes
O(1).

For our purposes, we introduce the nondimensional time variable τ = t/tV that is meant
to account for the behavior of the system in response to the slow process characterized by the
time scale tV . Moreover, we decompose each physical quantity featuring in equations (2.1) as
the product of a characteristic part (denoted by the index c) and an intrinsic part (denoted by
an overbar), i.e.

ρ(t, x) = ρcρ̄(τ,X), T (t, x) = TcT̄ (τ,X) and V (t, x) = VcV̄ (τ,X), (3.1)

where X = x/L ∈ [Xn,Xn + 1] is the nondimensional space coordinate (in nondimensional
units, the lattice constant is equal to unity). By rewriting equations (2.1) with the formalism
presented in equations (3.1) and noticing that the operator ∂/∂t rescales as

∂

∂t
= 1

tV

∂

∂τ
, (3.2)

we obtain ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

tV

∂ρ̄

∂τ
= kBTc

ζL2

∂

∂X

[
T̄

∂ρ̄

∂X
+

Vc

kBTc

∂V̄

∂X
ρ̄

]

1

tV

∂T̄

∂τ
= λ

CL2

∂2T̄

∂X2
+

ρcVc

CTc

kBTc

ζL2

∂V̄

∂X

[
T̄

∂ρ̄

∂X
+

Vc

kBTc

∂V̄

∂X
ρ̄

]
.

(3.3)

By recognizing that the ratios (kBTc)/(ζL2) and λ/(CL2) represent the inverse of the
characteristic time scales associated with molecular diffusivity of Brownian particles, tD ,
and thermal diffusion, tT , respectively (i.e. tD = (ζL2)/(kBTc) and tT = (CL2)/λ), we can
rewrite equations (3.3) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1

tV

∂ρ̄

∂τ
= 1

tD

∂

∂X

[
T̄

∂ρ̄

∂X
+ φc

∂V̄

∂X
ρ̄

]

1

tV

∂T̄

∂τ
= 1

tT

∂2T̄

∂X2
+

1

tD
µ

∂V̄

∂X

[
T̄

∂ρ̄

∂X
+ φc

∂V̄

∂X
ρ̄

]
,

(3.4)
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where φc = Vc/(kBTc) and µ = (kBρcφc)/C. Since we assume that the characteristic
time scale of thermal diffusion, tT , is smaller than the time scale associated with molecular
diffusivity, tD , by introducing the ratio σ = tT /tD < 1 and the positive smallness parameter
ε = tT /tV , we can rearrange equations (3.4) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂ρ̄

∂τ
= 1

ε
σ

∂

∂X

[
T̄

∂ρ̄

∂X
+ φc

∂V̄

∂X
ρ̄

]
∂T̄

∂τ
= 1

ε

∂2T̄

∂X2
+

1

ε
µσ

∂V̄

∂X

[
T̄

∂ρ̄

∂X
+ φc

∂V̄

∂X
ρ̄

]
.

(3.5)

Since we are interested in performing an asymptotic analysis of equations (3.5), we expand
the probability density distribution, ρ̄, and temperature, T̄ , in asymptotic series, i.e.

ρ̄(τ,X) =
∞∑

j=0

εj ρ̄j (τ,X) and T̄ (τ,X) =
∞∑

j=0

εj T̄ j (τ,X). (3.6)

We assume that expansions (3.6) exist and converge to their asymptotic solution in the limit
ε � 1. If these expressions are limited to the first order, the current of Brownian particles is
approximated by

J = ρckBTc

Lζ
[J̄ 0 + εJ̄ 1 + ε2J̄ 2 + · · ·], (3.7)

where the quantities

J̄ 0 = −
[
T̄ 0

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄0

]
,

J̄ 1 = −
[
T̄ 0

∂ρ̄1

∂X
+ T̄ 1

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄1

]
,

J̄ 2 = −
[
T̄ 1

∂ρ̄1

∂X

] (3.8)

represent the nondimensional zeroth-, first- and second-order terms of the asymptotic
expansion of the probability current, i.e.

J̄ =
∞∑

j=0

εj J̄ j . (3.9)

By accounting for equations (3.8), substituting the asymptotic expansions (3.6) into
equation (3.5) and collecting terms of the same power of ε, we obtain three sets of equations
that have to be satisfied asymptotically for any infinitesimally small ε. Since the coefficients
of each power of ε are independent of the parameter itself, each coefficient must be identically
zero in order to satisfy the equation for any arbitrarily small ε. Thus, by requiring the
coefficients of the orders O(ε−1), O(1) and O(ε) to be identically zero, we can reformulate
Streater’s model in terms of three sets of nondimensional equations, i.e.

ε−1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 = σ
∂

∂X

[
T̄ 0

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄0

]
,

0 = ∂2T̄ 0

∂X2
+ σµ

∂V̄

∂X

[
T̄ 0

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄0

]
,

(3.10)

ε0 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ̄0

∂τ
= σ

∂

∂X

[
T̄ 0

∂ρ̄1

∂X
+ T̄ 1

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄1

]
,

∂T̄ 0

∂τ
= ∂2T̄ 1

∂X2
+ σµ

∂V̄

∂X

[
T̄ 0

∂ρ̄1

∂X
+ T̄ 1

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄1

]
,

(3.11)
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ε :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ̄1

∂τ
= σ

∂

∂X

[
T̄ 1

∂ρ̄1

∂X

]
,

∂T̄ 1

∂τ
= ∂2T̄ 2

∂X2
+ σµ

∂V̄

∂X

[
T̄ 1

∂ρ̄1

∂X

]
.

(3.12)

Moreover, in order for the boundary conditions (2.4), and (2.7) to be satisfied, at any order, by
all terms of the asymptotic expansions (3.6), we require that

ρ̄0(t, Xn) = ρ̄0(t, Xn + 1), ρ̄1(t, Xn) = ρ̄1(t, Xn + 1),∫ 1

0
ρ̄0(t, X) dX = 1,

∫ 1

0
ρ̄1(t, X) dX = 0,

(3.13)

and

T̄ 0(t, Xn) = T̄ 0(t, Xn + 1), T̄ 1(t, Xn) = T̄ 1(t, Xn + 1),

T̄ 2(t, Xn) = T̄ 2(t, Xn + 1),
∂T̄ 0

∂X
(t,Xn) = ∂T̄ 0

∂X
(t,Xn + 1),

∂T̄ 1

∂X
(t,Xn) = ∂T̄ 1

∂X
(t,Xn + 1),

∂T̄ 1

∂X
(t,Xn) = ∂T̄ 1

∂X
(t,Xn + 1).

(3.14)

We notice that, by rescaling time as t → t/tT , it is also possible to introduce the ‘rapidly’
varying time coordinate θ = t/tT . Such nondimensional variable describes the response of
the system to processes characterized by the time scale tT . Since, in general, the terms ρ̄1

and T̄ 1 of the asymptotic expansions (3.6) depend also on θ , equations (3.10)–(3.12) should
be understood as a result of an average of equations (2.1) over the ‘rapidly’ varying time
coordinate θ .

4. Solution of the expanded Streater’s equations

In order to determine the asymptotic solutions to equations (3.10)–(3.12), we need to specify
the ratios φc, µ and σ , and the adiabatic potential V̄ . In this paper, we set φc = 1 and µ = 1,
we let σ range between the smallness parameter, ε, and unity, and we choose the potential

V̄ (τ,X) = {b + R1(τ ) cos(2πX)}{c + R2(τ ) cos[2π(X − a)]}
− {b + R1(τ )}{c + R2(τ ) cos(2πa)}. (4.1)

In equation (4.1), we introduced the functions R1 and R2 to express the dependence of the
potential on time and we used the constant a to make the potential asymmetric.

By assuming that the constants a, b, and c are fixed, the instantaneous shape of the
potential as a function of space is determined by R1(τ ) and R2(τ ). Therefore, the functions
R1(τ ) and R2(τ ) can be treated as parameters which, by varying adiabatically and periodically
in time, provide the instantaneous spatial distribution of the potential. In this paper, we define
R1(τ ) and R2(τ ) by the relations

R1(τ ) = r0 + r cos(2πτ), R2(τ ) = r0 + r sin(2πτ). (4.2)

In order for the potential (4.1) to be completely determined, the values of the constants a, b,
c, r0 and r must be assigned. The values chosen for these constants are listed in table 1, and
the corresponding shape of the potential is shown in figure 1.
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Figure 1. Shape of the potential V̄ given in equation (4.1). (a) The potential, V, is plotted
in nondimensional units against time τ = t/tV over three cycles (i.e. τ ∈ [0, 3]) and space
X ∈ [Xn, Xn + 1]. (b) The potential V̄ is evaluated at X = 0.5 and plotted against time. (c) The
potential V̄ is evaluated at time t = 0.5tV (i.e. τ = 0.5) and plotted against space.

Table 1. Constants which determine the potential given in equation (4.1)

a 0.4
b 1
c 1
r0 2
r 1
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4.1. Determination of the zeroth-order fields

The formal solution of equations (3.10) is given by

ρ̄0(τ,X) = C1(τ )γ−(τ,X) − C0(τ )γ−(τ,X)

∫ X

Xn

γ+(τ,X
′)

T̄ 0(τ,X′)
dX′, (4.3)

and

T̄ 0(τ,X) = σµC0(τ )

∫ X

Xn

V̄ (τ,X′) dX′ + b0(τ )X + b1(τ ). (4.4)

The functions γ∓(τ,X) and the constants C0(τ ), C1(τ ) and b0(τ ) are defined by

γ∓(τ,X) = exp

[
∓φc

∫ X

Xn

1

T̄ 0(τ,X′)
∂V̄

∂X
(τ,X′) dX′

]
, (4.5)

C0(τ ) = γ−(τ,Xn + 1) − 1

�(τ)
, C1(τ ) =

γ−(τ,Xn + 1)
∫ Xn+1
Xn

γ+(τ,X′)
T̄ 0(τ,X′) dX′

�(τ)
, (4.6)

b0(τ ) = −σµC0(τ )

∫ Xn+1

Xn

V̄ (τ,X′) dX′, (4.7)

where the quantity �(τ) is equal to

�(τ) =
[
γ−(τ,Xn + 1)

∫ Xn+1

Xn

γ−(τ,X′)
T̄ 0(τ,X′)

dX′
] ∫ Xn+1

Xn

γ−(τ,X′) dX′

− [γ−(τ,Xn + 1) − 1]

[∫ Xn+1

Xn

γ−(τ,Xn + 1)

(∫ X′

Xn

γ−(τ,X′′)
T̄ 0(τ,X′′)

dX′′
)

dX′
]

.

(4.8)

We notice that the constant b1(τ ) is still undetermined. It is also worth to remark that the
constant C0(τ ) represents the zeroth-order current of Brownian particles, i.e. C0(τ ) = J̄ 0(τ ).

According to equations (4.3)–(4.8), the zeroth-order probability density distribution can
be determined after temperature T̄ 0 is calculated. In order to do that, we write temperature T̄ 0

as the sum of its mean value

T̄ m
0 (τ ) =

∫ Xn+1

Xn

T̄ 0(τ,X) dX, (4.9)

and the corresponding fluctuation T̄
f

0 (τ,X) = T̄ 0(τ,X) − T̄ m
0 (τ ).

The mean value T̄ m
0 can be computed by having recourse to the second equation of the

set (3.11). Indeed, integrating both sides of this equation over the reference cell [Xn,Xn + 1]
and enforcing periodic boundary conditions on the first-order temperature gradient, ∂T̄ 1/∂X,
lead to the self-consistency condition

dT̄ m
0

dτ
(τ ) = −µ

∫ Xn+1

Xn

V̄ (τ,X)
∂ρ̄0

∂τ
(τ,X) dX. (4.10)

Furthermore, by applying definition (4.9) to equation (4.4) and using equation (4.7), we find

T̄
f

0 (τ,X) = σµC0(τ )

{∫ X

Xn

V̄ (τ,X′) dX′ − X

∫ Xn+1

Xn

V̄ (τ,X′) dX′

−
∫ Xn+1

Xn

[∫ X′

Xn

V̄ (τ,X′′) dX′′
]

dX′ +

(
Xn +

1

2

) ∫ Xn+1

Xn

V̄ (τ,X′) dX′
}

.

(4.11)

10
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Equations (4.10) and (4.11) make up a set of coupled nonlinear equations that completely
define the mean temperature, T̄ m

0 , and the fluctuation, T̄
f

0 . The determination of these
quantities allows for calculating the temperature field, T̄ 0 = T̄ m

0 + T̄
f

0 , the constants C0(τ ) and
C1(τ ), and thus, by virtue of equation (4.3), the probability density distribution, ρ̄0. However,
since the quantities ρ̄0 and C0(τ ) (that feature in equations (4.10) and (4.11)) depend on
temperature in a very complicated way, solving equations (4.10) and (4.11) is not an easy task.

This problem can be strongly simplified in the case in which the fields ρ̄0 and T̄ 0 describe
the equilibrium state of the system, provided that such a state is a solution of equations (3.10)
respectful of boundary conditions. The simplification is because, in the case of equilibrium,
temperature T̄ 0 is independent of the space coordinate, X, and equals its mean value, T̄ m

0 ,
the probability density distribution, ρ̄0, equals the Gibbs distribution, and, consequently, the
zeroth-order current is identically zero (i.e. C0(τ ) = 0). Based on this argument, we propose
here to approximate the actual zeroth-order temperature field with its mean value, i.e.

T̄ 0(τ,X) = T̄ m
0 (τ ). (4.12)

This implies that the zeroth-order probability density distribution reduces to the Gibbs
distribution

ρ̄0(τ,X) = 1

Z−(τ )
γ−(τ,X), (4.13)

where the quantity Z−(τ ), which is said to be the partition function of the system, is defined
through the normalization condition, i.e.

Z−(τ ) = 1

C1(τ )
=

∫ Xn+1

Xn

γ−(τ,X′) dX′. (4.14)

Since, according to equation (4.12), temperature (which, from here on, will be simply denoted
by T̄ 0(τ )) is independent of space coordinates, the integrand featuring in the exponential in
equation (4.5) is exactly integrable, and the functions γ∓(τ,X) can be thus written as

γ∓(τ,X) = exp

[
∓ φc

T̄ 0(τ )
[V̄ (τ,X) − V̄ (τ,Xn)]

]
. (4.15)

We remark that the functions defined in (4.12) and (4.13) satisfy equations (3.10) together
with the boundary conditions (3.13) and (3.14). Moreover, since T̄ 0 is uniformly distributed
in space, it cannot generate any thermal gradient. This result agrees with the fact that thermal
current has to be absent at the equilibrium state of the system.

Although the approximation introduced in equation (4.12) (which is remnant of the mean
field approximation) may be poor for some applications, we use it because it enables us to
find the limit in which Parrondo’s results [14] can be retrieved. Indeed, in Parrondo’s paper,
the first addend of expansion of the field ρ (which coincides with our ρ̄0) equals the Gibbs
equilibrium distribution as a consequence of the fact that, in that problem, temperature is
regarded as a constant, while the non-equilibrium term, denoted by ϕ, is responsible for
generating a current of Brownian particles across the boundary of the lattice reference cell.
Hence, in order to re-obtain this picture in the case of temperature variable in time and space,
either do we admit that the zeroth-order temperature, T̄ 0, depends on space coordinates and
ρ̄0 consists of both an equilibrium term and a non-equilibrium term (the latter being related
to the zeroth-order temperature fluctuation T̄

f

0 ), or we simply approximate the zeroth-order
temperature with its mean value, and find that ρ̄0 becomes the Gibbs equilibrium distribution.
In this paper, we followed the second path and, by identifying the first-order fields, T̄ 1 and ρ̄1,
as non-equilibrium corrections, we showed that the current of Brownian particles exhibits a
contribution (which was absent in Parrondo’s paper) related to the thermal gradient generated
by T̄ 1.

11
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4.2. Determination of temperature T̄ 0, and the first-order fields

In order to determine the first-order probability density distribution, ρ̄1, and temperature T̄ 1,
we need to solve equations (3.11).

4.2.1. Determination of the first-order probability density distribution. The explicit form
of the first-order probability density distribution, ρ̄1, is given by the general solution to
equation (3.11), i.e.

ρ̄1(τ,X) = K2(τ )γ−(τ,X) + K1(τ )
γ−(τ,X)

T̄ 0(τ )

∫ X

Xn

γ+(τ,X
′) dX′

+
1

σ T̄ 0(τ )
γ−(τ,X)

∫ X

Xn

γ+(τ,X
′)

(∫ X′

Xn

∂ρ̄0

∂τ
(τ,X′′) dX′′

)
dX′

+
φc

[T̄ 0(τ )]2
ρ̄0(τ,X)

∫ X

Xn

T̄ 1(τ,X
′)

∂V̄

∂X
(τ,X′) dX′, (4.16)

where

γ+(τ,X) = exp

[
+φc

V̄ (τ,X)

T̄ 0(τ )

]
and Z+(τ ) =

∫ Xn+1

Xn

γ+(τ,X) dX. (4.17)

According to equations (3.13), the constants K1(τ ) and K2(τ ) are calculated by requiring
ρ̄1 to satisfy periodic boundary conditions, and imposing that the integral of ρ̄1 over the interval
[Xn,Xn + 1] is zero [14], i.e.

ρ̄1(τ,Xn) = ρ̄1(τ,Xn + 1) and
∫ Xn+1

Xn

ρ̄1(τ,X) dX = 0. (4.18)

By enforcing equations (4.18) and introducing the notation

f (τ,X) = γ−(τ,X)

σ T̄ 0(τ )

{[∫ Xn+1

Xn

γ+(τ,X)

(∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

)
dX

]

×
[∫ Xn+1

Xn

ρ̄0(τ,X)

(∫ X

Xn

γ+(τ,X
′)

Z+(τ )
dX′

)
dX

]

−
∫ Xn+1

Xn

ρ̄0(τ,X)

(∫ X

Xn

γ+(τ,X
′)

(∫ X′

Xn

∂ρ̄0

∂τ
(τ,X′′) dX′′

)
dX′

)
dX

+
∫ X

Xn

γ+(τ,X
′)

(∫ X′

Xn

∂ρ̄0

∂τ
(τ,X′′) dX′′

)
dX′

−
[∫ Xn+1

Xn

γ+(τ,X)

(∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

)
dX

] [∫ X

Xn

γ+(τ,X
′)

Z+(τ )
dX′

]}
,

(4.19)

it can be proven that the first-order probability density distribution is given by

ρ̄1(τ,X) = f (τ,X) +
φcρ̄0(τ,X)

[T̄ 0(τ )]2

(∫ Xn+1

Xn

T̄ 1(τ,X)
∂V̄

∂X
(τ,X) dX

)

×
[∫ Xn+1

Xn

ρ̄0(τ,X)

(∫ X

Xn

γ+(τ,X
′)

Z+(τ )
dX′

)
dX −

∫ X

Xn

γ+(τ,X
′)

Z+(τ )
dX′

]

12
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Figure 2. Zeroth-order temperature, T̄ 0, is plotted against nondimensional time τ = t/tV over
three cycles. This result is obtained by setting τin = 0 and imposing the condition A0 = T̄ in = 10.

+
φcρ̄0(τ,X)

[T̄ 0(τ )]2

[∫ X

Xn

T̄ 1(τ,X
′)

∂V̄

∂X
(τ,X′) dX′

−
∫ Xn+1

Xn

ρ̄0(τ,X)

(∫ X

Xn

T̄ 1(τ,X
′)

∂V̄

∂X
(τ,X′) dX′

)
dX

]
. (4.20)

4.2.2. Determination of the zeroth-order temperature. By employing equation (4.20), we
can rewrite equation (3.11) as

∂T̄ 0

∂τ
(τ ) = ∂2T̄ 1

∂X2
(τ,X) + σµK1(τ )

∂V̄

∂X
(τ,X) + µ

∂V̄

∂X
(τ,X)

∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′. (4.21)

Even though equation (4.21) involves T̄ 0, T̄ 1 and ρ̄0, it is possible to find a relation which
enables us to determine T̄ 0 in a self-consistent fashion. Indeed, by integrating equation (4.21)
over the unit cell [Xn,Xn + 1] and appealing for the periodic boundary conditions imposed on
the temperature gradient, ∂T̄ 1/∂X, we obtain

dT̄ 0

dτ
(τ ) = −µ

∫ Xn+1

Xn

V̄ (τ,X)
∂ρ̄0

∂τ
(τ,X) dX. (4.22)

Since ρ̄0 depends on T̄ 0 (cf equations (4.13) and (4.14)), equation (4.22) is a nonlinear
integro-differential equation. By integrating both sides of equation (4.22), we find

T̄ 0(τ ) = A0 − µ

∫ τ

τin

[∫ Xn+1

Xn

V̄ (τ ′, X)
∂ρ̄0

∂τ
(τ ′, X) dX

]
dτ ′, (4.23)

where, for the sake of consistency, the constant A0 has to be taken equal to the initial
temperature distribution (i.e. A0 = T̄ in). We solved equation (4.22) numerically and,
consistently with the time periodicity of the potential, we found that T̄ 0 is periodic in time and
has the same period of the potential. The result of our calculation is shown in figure 2, where
we have set T̄ in = 10.
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We would like to remark that the time periodicity of T̄ 0, although following from the
periodicity of the potential and being determined by solving a self-consistency relation, may
incorporate the model proposed by Reimann et al [19], in which, the authors study the problem
of Brownian motors driven by temperature oscillations and evolving in a one-dimensional
periodic lattice in the presence of a potential that is periodic in space and independent of time.

4.2.3. Determination of the first-order temperature. Once temperature T̄ 0 has been found,
the zeroth-order probability density distribution, ρ̄0, can be evaluated by using equations (4.13)
and (4.14). The behavior of ρ̄0 is shown in figure 3. We notice that ρ̄0 is a periodic function
of time (cf figure 3(b)) and space (cf figure 3(c))

The determination of ρ̄0 and T̄ 0 enables us to calculate the first-order temperature, T̄ 1. In
order to do that, we first rewrite equation (4.21) as

∂2T̄ 1

∂X2
(τ,X) = ∂T̄ 0

∂τ
(τ ) − σµ

∂V̄

∂X
(τ,X)

[
K1(τ ) +

1

σ

∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

]
, (4.24)

and determine the constant K1(τ ) by invoking the first condition of equations (4.18), i.e.

K1(τ ) = − φc

Z+(τ )Z−(τ )T̄ 0(τ )

∫ Xn+1

Xn

T̄ 1(τ,X)
∂V̄

∂X
(τ,X) dX

− 1

σ

∫ Xn+1

Xn

γ+(τ,X)

Z+(τ )

(∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

)
dX. (4.25)

By substituting equation (4.25) into equation (4.24) and introducing the auxiliary function

G(τ,X) = ∂T̄ 0

∂τ
(τ ) + µ

∂V̄

∂X
(τ,X)

×
[∫ Xn+1

Xn

γ+(t, X)

Z+(τ )

(∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

)
dX −

∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

]
,

(4.26)

we rearrange equation (4.24) as

∂2T̄ 1

∂X2
(τ,X) = G(τ,X) + κ(τ)

∂V̄

∂X
(τ,X)

∫ Xn+1

Xn

T̄ 1(τ,X)
∂V̄

∂X
(τ,X) dX, (4.27)

where

κ(τ) = µσφc

Z−(τ )Z+(τ )T̄ 0(τ )
. (4.28)

Since the potential is assumed to be differentiable in the interval [Xn,Xn + 1],
equation (4.27) can be formally solved by integrating twice, i.e.

T̄ 1(τ,X) = T̄ 1(τ,Xn) +

[
∂T̄ 1

∂X
(τ,Xn)

]
(X − Xn) +

∫ X

Xn

(∫ X′

Xn

G(τ,X′′) dX′′
)

dX′

+ κ(τ)

[∫ Xn+1

Xn

T̄ 1(τ,X)
∂V̄

∂X
(τ,X) dX

] ∫ X

Xn

V̄ (τ,X′) dX′. (4.29)

The enforcement of periodic boundary conditions on temperature T̄ 1 allows for determining
the value of the temperature gradient at the lattice site, Xn. Indeed, by introducing the notation

Q(τ,X) = ∂T̄ 1

∂X
(τ,X), (4.30)

14
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(a)

(b)

(c)

Figure 3. Gibbs probability density distribution, ρ̄0. (a) ρ̄0 is plotted against nondimensional time
τ = t/tV over three cycles (i.e. τ ∈ [0, 3]) and space X ∈ [Xn, Xn + 1]. (b) ρ̄0 is evaluated at
X = 0.5 and plotted against time. (c) ρ̄0 is evaluated at time t = 0.5tV (i.e. τ = 0.5) and plotted
against space.
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the temperature gradient at the lattice site Xn, Q(τ,Xn), is given by

Q(τ,Xn) = −
∫ Xn+1

Xn

(∫ X

Xn

G(τ,X′) dX′
)

dX

− κ(τ)

[∫ Xn+1

Xn

T̄ 1(τ,X
′′)

∂V̄

∂X
(τ,X′′) dX′′

] ∫ Xn+1

Xn

V̄ (τ,X) dX. (4.31)

By integrating equation (4.27) and substituting equation (4.31) into the resulting
expression, we find

Q(τ,X) = F(τ,X) + κ(τ)U(τ,X)

∫ Xn+1

Xn

T̄ 1(τ,X
′)

∂V̄

∂X
(τ,X′) dX′, (4.32)

where

F(τ,X) =
∫ X

Xn

G(τ,X′) dX′ −
∫ Xn+1

Xn

(∫ X

Xn

G(τ,X′) dX′
)

dX, (4.33)

and

U(τ,X) = V̄ (τ,X) −
∫ Xn+1

Xn

V̄ (τ,X′) dX′. (4.34)

We note that temperature T̄ 1 can be eliminated from equation (4.32) by invoking the identity∫ Xn+1

Xn

T̄ 1(τ,X)
∂V̄

∂X
(τ,X) dX = −

∫ Xn+1

Xn

V̄ (τ,X)Q(τ,X) dX, (4.35)

which holds true because T̄ 1 has to satisfy the periodic boundary condition T̄ 1(τ,Xn) =
T̄ 1(τ,Xn + 1). By virtue of equation (4.35), equation (4.32) can be written as

Q(τ,X) = F(τ,X) − κ(τ)U(τ,X)

∫ Xn+1

Xn

Q(τ,X′)V̄ (τ,X′) dX′. (4.36)

This equation enables us to determine the temperature gradient, Q(τ,X), and to calculate
temperature T̄ 1.

Equation (4.36) is a Fredholm integral equation of second kind with degenerate kernel
G(τ,X,X′) = U(τ,X)V̄ (τ,X′). Its solution is given by [20]

Q(τ,X) = F(τ,X) − U(τ,X)
κ(τ)

∫ Xn+1
Xn

V (τ,X)F (τ,X) dX

1 + κ(τ)
∫ Xn+1
Xn

V (τ,X)U(τ,X) dX
. (4.37)

Since Q(τ,X) is the temperature gradient, T̄ 1 is found by direct integration, i.e.

T̄ 1(τ,X) = A(τ) + P(τ,X), (4.38)

where the convention

A(τ) = T̄ 1(τ,Xn) and P(τ,X) =
∫ X

Xn

Q(τ,X′) dX′ (4.39)

has been used for notational convenience.
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4.2.4. Determination of the constant A(τ). In order for temperature T̄ 1 to be completely
determined, we need to calculate the constant A(τ). This is done by imposing that the result
given in equation (4.38) is consistent with the second equation of the set (3.12). By virtue of
consistency, the integral on the left-hand side of this equation over the interval [Xn,Xn + 1]
has to be equal to the integral on the right-hand side over the same interval. Since the gradient
∂T̄ 2/∂X is a periodic function of space, its integral over the reference lattice cell is identically
zero, and the requirement above leads to the condition

d

dτ

∫ Xn+1

Xn

T̄ 1(τ,X) dX = σµ

∫ Xn+1

Xn

∂V̄

∂X
(τ,X)

[
T̄ 1(τ,X)

∂ρ̄1

∂X
(τ,X)

]
dX. (4.40)

Since potential V̄ , temperature T̄ 1 and probability density distribution ρ̄1 are all periodic in
space, integration by parts of the right-hand side of equation (4.40) yields

d

dτ

∫ Xn+1

Xn

T̄ 1(τ,X) dX = −σµ

∫ Xn+1

Xn

V̄ (τ,X)
∂

∂X

[
T̄ 1(τ,X)

∂ρ̄1

∂X
(τ,X)

]
dX. (4.41)

Furthermore, by using the first equation of the set (3.12)and substituting the expression of T̄ 1

given in equation (4.38) into the left-hand side term of equation (4.41), we obtain

dA

dτ
(τ ) +

d

dτ

∫ Xn+1

Xn

P (τ,X) dX = −µ

∫ Xn+1

Xn

V̄ (τ,X)
∂ρ̄1

∂τ
(τ,X) dX. (4.42)

In order to highlight the dependence of ρ̄1 on A(τ) and P(τ,X), it is convenient to
determine an expression in which all the terms featuring P(τ,X) are separated from the terms
multiplied by A(τ). After some algebraic manipulations, this expression is found to be

ρ̄1(τ,X) = h(τ,X) +
φcρ̄0(τ,X)

[T̄ 0(τ )]2
Ṽ (τ,X)A(τ), (4.43)

where

h(τ,X) = f (τ,X) + g(τ,X), (4.44)

Ṽ (τ,X) = V (τ,X) −
∫ Xn+1

Xn

ρ̄0(τ,X)V̄ (τ,X) dX (4.45)

and g(τ,X) denotes the auxiliary function

g(τ,X)= φcρ̄0(τ,X)

[T̄ 0(τ )]2

{[∫ X

Xn

γ+(τ,X
′)

Z+(τ )
dX′−

∫ Xn+1

Xn

ρ̄0(τ,X)

(∫ Xn+1

Xn

γ+(τ,X
′)

Z+(τ )
dX′

)
dX

]

×
[∫ Xn+1

Xn

Q(τ,X)V̄ (τ,X) dX

]
+

∫ X

Xn

P (τ,X′)
∂V̄

∂X
(τ,X′) dX′

−
∫ Xn+1

Xn

ρ̄0(τ,X)

(∫ X

Xn

P (τ,X′)
∂V̄

∂X
(τ,X′) dX′

)
dX

}
. (4.46)

By substituting equation (4.43) into equation (4.42), we find the self-consistent differential
equation which allows for determining the constant A(τ), i.e.

dA

dτ
(τ ) + N(τ)A(τ) = −I (τ ), (4.47)

where we introduced the compact notation

I (τ ) = µ
∫ Xn+1
Xn

V̄ (τ,X) ∂h
∂τ

(τ,X) dX + d
dτ

∫ Xn+1
Xn

P (τ,X) dX

1 + µφc

[T̄ 0(τ )]2

∫ Xn+1
Xn

ρ̄0(τ,X)V̄ (τ,X)Ṽ (τ,X) dX
(4.48)
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and

N(τ) = 1

1 + µφc

[T̄ 0(τ )]2

∫ Xn+1
Xn

ρ̄0(τ,X)V̄ (τ,X)Ṽ (τ,X) dX

×
{

µφc

[T̄ 0(τ )]2

[∫ Xn+1

Xn

V̄ (τ,X)
∂ρ̄0

∂τ
(τ,X)Ṽ (τ,X) dX

+
∫ Xn+1

Xn

V̄ (τ,X)ρ̄0(τ,X)
∂Ṽ

∂τ
(τ,X) dX

]

− 2µφc

[T̄ 0(τ )]3

∂T̄ 0

∂τ
(τ )

∫ Xn+1

Xn

ρ̄0(τ,X)V̄ (τ,X)Ṽ (τ,X) dX

}
. (4.49)

By imposing the initial condition A(τin) = 0, the solution to equation (4.47) is given by

A(τ) = −
[∫ τ

τin

I (τ ′) e
∫ τ ′
τin

N(τ ′′) dτ ′′
dτ ′

]
e− ∫ τ

τin
N(τ ′) dτ ′

. (4.50)

The constant A(τ) is found by evaluating the right-hand side of equation (4.50) numerically.
Finally, substitution into equation (4.38) allows for obtaining temperature T̄ 1. This enables
us to completely determine the first-order probability density distribution ρ̄1.

The results of the calculation of T̄ 1 and ρ̄1 are shown in figures 4 and 5, respectively, for
three different values of the parameter σ . We evaluated T̄ 1 and ρ̄1 for σ = 1, σ = 0.1 and
σ = 0.01.

5. Directed transport of Brownian particles

In this section, we show how directed transport of Brownian particles takes place in the
presence of a changing temperature field. In general, the existence of directed transport of
Brownian particles is proven by determining the net current of particles crossing the boundary
of the lattice cell [Xn,Xn +1]. By invoking the asymptotic expansion of the probability current
given in equation (3.7) and truncating the expansion at the first order, we obtain

J ≈ ε
ρckBTc

Lζ
J̄ 1 = −ε

ρckBTc

Lζ

[
T̄ 0

∂ρ̄1

∂X
+ T̄ 1

∂ρ̄0

∂X
+ φc

∂V̄

∂X
ρ̄1

]
. (5.1)

We note that the zeroth-order current, J̄ 0 (cf equations (3.8)), vanishes identically because the
Gibbs probability distribution, ρ̄0, describes a zero-current state.

By substituting the expression of ρ̄1 given in equation (4.16) into equation (5.1), we find

J̄ 1(τ,X) = −
[
K1(τ ) +

1

σ

∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

]
. (5.2)

Moreover, by appealing to the definition of the constant K1(τ ) in equation (4.25), we can
rearrange J̄ 1 as

J̄ 1(τ,X) = 1

σ

∫ Xn+1

Xn

γ+(τ,X
′)

Z+(τ )

(∫ X′

Xn

∂ρ̄0

∂τ
(τ,X′′) dX′′

)
dX′ +

φc

Z−(τ )Z+(τ )T̄ 0(τ )

×
∫ Xn+1

Xn

T̄ 1(τ,X
′)

∂V̄

∂X
(τ,X′) dX′ − 1

σ

∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′. (5.3)

Since we are interested in calculating the current of particles crossing the boundary of
the system, we need to evaluate J̄ 1 at the lattice sites Xn and Xn + 1. By noting that the
normalization condition on ρ̄0 implies

0 =
∫ Xn+1

Xn

∂ρ̄0

∂τ
(τ,X′) dX′ = d

dτ

∫ Xn+1

Xn

ρ̄0(τ,X
′) dX′, (5.4)
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(a)

(b)

(c)

Figure 4. First-order temperature, T̄ 1. (a) T̄ 1 is plotted against nondimensional time τ = t/tV
over three cycles (i.e. τ ∈ [0, 3]) and space X ∈ [Xn, Xn + 1]. (b) T̄ 1 is evaluated at X = 0.5 and
plotted against time. (c) T̄ 1 is evaluated at time t = 0.5tV (i.e. τ = 0.5) and plotted against space.
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(a)

(b)

(c)

Figure 5. First-order probability density distribution, ρ̄1. (a) ρ̄1 is plotted against nondimensional
time τ = t/tV over three cycles (i.e. τ ∈ [0, 3]) and space X ∈ [Xn, Xn + 1]. (b) ρ̄1 is evaluated at
X = 0.5 and plotted against time. (c) ρ̄1 is evaluated at time t = 0.5tV (i.e. τ = 0.5) and plotted
against space.
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Figure 6. Global current of Brownian particles crossing the boundary of the lattice cell [Xn, Xn+1]

and rewriting the second term on the right-hand side of equation (5.3) as

∫ Xn+1

Xn

T̄ 1(τ,X
′)

∂V̄

∂X
(τ,X′) dX′ = −

∫ Xn+1

Xn

V̄ (τ,X′)
∂T̄ 1

∂X
(τ,X′) dX′, (5.5)

we obtain

J̄ 1(τ,Xn) = J̄ 1(τ,Xn + 1) = 1

σ

∫ Xn+1

Xn

γ+(τ,X
′)

Z+(τ )

(∫ X′

Xn

∂ρ̄0

∂τ
(τ,X′′) dX′′

)
dX′

− φc

Z−(τ )Z+(τ )T̄ 0(τ )

∫ Xn+1

Xn

V̄ (τ,X′)
∂T̄ 1

∂X
(τ,X′) dX′. (5.6)

The probability current given in equation (5.6) is periodic in space. The global current of
Brownian particles accumulated after k adiabatic cycles of the potential is found by integrating
equation (5.6) over the time interval [τin, τin + k], i.e.

J̄ 1(τin, k) =
∫ τin+k

τin

{
1

σ

∫ Xn+1

Xn

γ+(τ,X)

Z+(τ )

(∫ X

Xn

∂ρ̄0

∂τ
(τ,X′) dX′

)
dX

}
dτ

−
∫ τin+k

τin

{
φc

Z−(τ )Z+(τ )T̄ 0(τ )

∫ Xn+1

Xn

V̄ (τ,X)
∂T̄ 1

∂X
(τ,X) dX

}
dτ . (5.7)

The result of this calculation is shown in figure 6 for k = 3 (i.e. three cycles of the adiabatic
potential), and σ = 1, σ = 0.1 and σ = 0.01.

6. Implications for the first and second law of thermodynamics

In this section, we investigate the implications of the theory discussed so far on the first and
second law of thermodynamics.
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6.1. First law of thermodynamics

Equation (2.10) provides the expression of the power inserted into the system described by
Streater’s model. In nondimensional units, we can rewrite equation (2.10) as

dE

dt
(t) = ρcVcL

tV

∫ Xn+1

Xn

ρ̄(τ,X)
∂V̄

∂τ
(τ,X) dX. (6.1)

By appealing for the asymptotic expansion of the probability density distribution given in
equations (3.6) and truncating the expansion at the first order, we obtain

dE

dt
(t) ≈ ρcVcL

tV

[∫ Xn+1

Xn

ρ̄0(τ,X)
∂V̄

∂τ
(τ,X) dX + ε

∫ Xn+1

Xn

ρ̄1(τ,X)
∂V̄

∂τ
(τ,X) dX

]
. (6.2)

Equation (6.2) must be used to evaluate the variation of energy in response to an adiabatic
variation of the potential over one or more cycles. In order to do that, it suffices to integrate
equation (6.2) over the time interval [0, tV ] (from here on, we set τin = 0), i.e.

E(tV ) − E(0) ≈ ρcVcL

{∫ 1

0

(∫ Xn+1

Xn

ρ̄0(τ,X)
∂V̄

∂τ
(τ,X) dX

)
dτ

+ ε

∫ 1

0

(∫ Xn+1

Xn

ρ̄1(τ,X)
∂V̄

∂τ
(τ,X) dX

)
dτ

}
. (6.3)

By taking into account equation (4.22) and defining the statistical average of the ratchet
potential as

〈V̄ 〉(τ ) =
∫ Xn+1

Xn

ρ̄0(τ,X)V̄ (τ,X) dX, (6.4)

integration by parts of the first term on the right-hand side of equation (6.3) leads to

E(tV ) − E(0) ≈ ρcVcL

{
[〈V̄ 〉(1) − 〈V̄ 〉(0)] +

1

µ
[T̄ 0(1) − T̄ 0(0)]

+ ε

∫ 1

0

(∫ Xn+1

Xn

ρ̄1(τ,X)
∂V̄

∂τ
(τ,X) dX

)
dτ

}
. (6.5)

Since the statistical average of the ratchet potential, 〈V̄ 〉, and the zeroth-order temperature,
T̄ 0, are periodic functions of time (cf figure 2), the terms between brackets in equation (6.5)
are identically zero, and we can write

E(tV ) − E(0) ≈ ρcVcL

[
ε

∫ 1

0

(∫ Xn+1

Xn

ρ̄1(τ,X)
∂V̄

∂τ
(τ,X) dX

)
dτ

]
. (6.6)

According to equation (6.6), the energy variation over k cycles is given by

E(ktV ) − E(0) ≈ ρcVcL

[
ε

∫ k

0

(∫ Xn+1

Xn

ρ̄1(τ,X)
∂V̄

∂τ
(τ,X) dX

)
dτ

]
. (6.7)

We calculated equation (6.6) numerically for the case k = 3, and found that the variation
in energy is not exactly zero. The result of our calculation is reported in figure 7. While
the smallness of energy variation is caused by the multiplication of the right-hand side of
equation (6.7) by the smallness parameter ε, the fact that it is not zero is a consequence of the
first-order probability density distribution, ρ̄1. Therefore, we conclude that energy variation
is a first-order effect.
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Figure 7. Energy variation over three cycles.

6.2. Second law of thermodynamics

Equation (2.13) states that entropy variation is greater than, or equal to, zero. In
nondimensional units, we can write equation (2.13) as

dS

dt
(t) = ρck

2
BTc

Lζ

∫ Xn+1

Xn

[J̄ (τ,X)]2

T̄ (τ,X)ρ̄(τ,X)
dX +

λ

L

∫ xn+L

xn

[
1

T̄ (τ,X)

∂T̄

∂X
(τ,X)

]2

dX � 0.

(6.8)

By substituting the asymptotic expansion of current, J̄ , temperature, T̄ , and probability density
distribution, ρ̄, and truncating the expansions at the first-order, we can rearrange equation (6.8)
as

dS

dt
(t) = ρck

2
BTc

Lζ

∫ Xn+1

Xn

ε2[J̄ 1(τ,X)]2

[T̄ 0(τ ) + εT̄ 1(τ,X)][ρ̄0(τ,X) + ερ̄1(τ,X)]
dX

+
λ

L

∫ xn+L

xn

[
ε

T̄ 0(τ ) + εT̄ 1(τ,X)

∂T̄ 1

∂X
(τ,X)

]2

dX � 0. (6.9)

By expanding equation (6.9) in Taylor series in a neighborhood of ε = 0, we obtain

dS

dt
(t) ≈ ε2 ρck

2
BTc

Lζ

∫ Xn+1

Xn

[J̄ 1(τ,X)]2

T̄ 0(τ )ρ̄0(τ,X)
dX

+ ε2 λ

L

∫ xn+L

xn

[
1

T̄ 0(τ )

∂T̄ 1

∂X
(τ,X)

]2

dX � 0. (6.10)

This result implies that the theory presented in this paper predicts that entropy variation is a
second-order effect. Since we limited our description to the first order in ε, we conclude that
entropy can be regarded as constant within the adiabatic limit ε = tT /tV � 1.

7. Conclusions

We studied the interaction of Brownian particles with a changing temperature field in the
presence of a one-dimensional, periodic and asymmetric adiabatic potential (cf equation (4.1)
and figure 1). Our aim was to show how directed transport takes place and compare our results
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with the case of Brownian particles in a thermal bath [14]. In order to investigate the system
described above, we had recourse to Streater’s model [15, 16], i.e. we studied a set of equations
consisting of a Smoluchowski equation and a nonlinear Fourier equation (cf equations (2.1)).
We carried out the analysis of Streater’s model by performing the asymptotic expansion of
equations (2.1). This was done by sorting out two well separated time scales (i.e. the time
scale tT associated with thermal diffusion and the time scale tV associated with the slow
cyclic variation of the adiabatic potential), expanding the probability density distribution,
ρ, and temperature, T, in asymptotic series [21, 22] (cf equations (3.6)), and studying the
expanded Streater’s equations (cf equations (3.10)–(3.12)) by perturbing the system from its
thermodynamic equilibrium state.

In order to retrieve, at the lowest order of our perturbative study, the results presented
by Parrondo [14], we approximated temperature T̄ 0 with its mean value and showed that the
zeroth-order probability density distribution, ρ̄0, describes the thermodynamic equilibrium
state of the system, while the first-order terms, ρ̄1 and T̄ 1, are non-equilibrium corrections.

We found that the zeroth-order temperature, T̄ 0 (cf equation (4.22)) is periodic in time
with the same period, tV , as the ratchet potential (cf figure 2).

The periodicity of T̄ 0 implies that Gibbs distribution, ρ̄0, is also periodic in time
(cf figure 3(b)). Furthermore, since the potential is assumed to be a periodic function of
space, the Gibbs distribution is periodic in space too (cf figure 3(c)).

We remark that, since ρ̄0 and T̄ 0, although descending from a framework more general
than that presented in [14], are equilibrium quantities, the influence of a changing temperature
field can only be studied by focusing on the first-order (non-equilibrium) fields ρ̄1 and T̄ 1.

By looking at figure 4(b), we notice that T̄ 1 is not periodic in time. In particular, the
deviation from periodicity appears to be irrelevant when σ is of the order of unity (i.e. σ ∼ 1),
while it becomes noticeable as σ decreases (e.g. σ = 0.01). In the latter case, T̄ 1 exhibits a
marked positive ‘drift’, which signals an increment of temperature after a cyclic variation of
the adiabatic potential.

In figure 5(b), we showed that the first-order probability density distribution, ρ̄1, is not
periodic in time. In this case, the deviation from periodicity is due to a negative ‘drift’, which
becomes noticeable as σ decreases (e.g. σ = 0.01).

In figures 4(c) and 5(c), we reported the spatial behavior of T̄ 1 and ρ̄1, respectively. These
figures show that, by virtue of the periodic boundary conditions imposed on temperature and
the first-order probability density distribution, both T̄ 1 and ρ̄1 are exactly periodic functions
of space.

The first-order terms, ρ̄1 and T̄ 1, are responsible for generating directed transport. In
particular, we showed that, since temperature T̄ 1 is not uniformly distributed, it produces a
thermal gradient, which contributes to ‘push’ Brownian particles across the boundary of the
lattice cell [Xn,Xn + 1]. Therefore, the global current of Brownian particles consists of two
contributions that can be identified with the first and the second addend on the right-hand side
of equation (5.7), respectively. The first contribution coincides with the current obtained by
Parrondo [14], while the second contribution describes a current due to a thermal gradient,
and, as such, cannot feature in the case of Brownian particles in a thermal bath at constant
temperature. We conclude that the presence of a thermal gradient (this is a first-order effect
according to theory exposed in this paper) is a source of directed transport for Brownian
particles. The global current is shown in figure 6. We notice that current exhibits a positive
‘drift’, which testifies that the number of particles crossing the boundary of the lattice cell per
unit time increases after each cycle.

In this paper we also evaluated the time variation of the global energy of the system (cf
equations (6.6) and (6.7)), and we showed that only the zeroth-order contribution vanishes
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identically (this is due to the time periodicity of both the statistical average of the potential,
〈V̄ 〉 and temperature T̄ 0), while the first-order term induces a nonzero energy variation after
each cycle (cf figure 7). By comparing equation (6.3) with equation (6.6), we notice that the
first integral on the right-hand side of equation (6.3) has to vanish, i.e.

ρcVcL

{∫ 1

0

(∫ Xn+1

Xn

ρ̄0(τ,X)
∂V̄

∂τ
(τ,X) dX

)
dτ = 0. (7.1)

Although the result obtained in equation (7.1) is consistent with Parrondo’s description of a
Brownian motor in a thermal bath [14], we notice that, in our case, energy variation does not
reduce to an exact differential form in the space of potential’s parameters. Therefore, whereas
in Parrondo’s case (i.e. temperature was regarded as a constant), the vanishing of the energy
variation led to the definition of reversible ratchets, in the case studied in this paper (i.e.
temperature is treated as a field changing in space and time according to Streater’s model), a
small energy contribution is required for directed transport of Brownian particles to take place.

We remark that, as the number of cycles, k, increases, the energy variation increases too,
and, for each cycle m = 0, . . . , k, the increment [E((m + 1)tV ) − E(mtV )] is constant. We
may interpret this result by saying that the system shows no memory.

We analyzed the variation of entropy. In equation (6.10) we showed that entropy variation
is a second-order effect and, as such, it can be neglected within a first-order theory. Thus, we
conclude that also in the case of Brownian particles interacting with a changing temperature
field in the presence of an adiabatic potential, entropy can be regarded as constant within the
adiabatic approximation.

In a forthcoming paper, we would like to abandon the approximation made in
equation (4.12) and address this problem by accounting for the non-equilibrium contributions
featuring also in the zeroth-order fields, T̄ 0 and ρ̄0.
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